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The sonic flow about some symmetric half-bodies 

By T. R. F. NONWEILER 
Department of Aeronautical Engineering, The Queen’s University of Belfast 

(Received 18 November 1957) 

SUMMARY 
The approximate Tricomi equation relevant to sonic speed of 

two-dimensional small-disturbance flow is solved by separation of 
variables, where these are certain stipulated functions of the 
Cartesian velocity perturbations. The symmetric flow patterns 
obtained from this solution are shown to correspond to those 
about half-bodies, whose ordinates vary as xn  where 0.4 < n < 1, 
and x is the distance along the plane of symmetry. The surface 
pressures on such bodies are deduced. 

In particular, the body whose ordinates vary as x2j5 has a sonic 
surface velocity, except at the nose, where an edge-force which 
causes a drag force is shown to exist. On the assumption that a 
free-stream breakaway (at sonic velocity) occurs at the shoulder 
of a body, this solution thereby yields the flow about an aerofoil 
of the same shape having a flat base. This bluff-nosed section 
has only a little more than half the drag of a wedge on the same 
chord and base. 

INTRODUCTION 
The use of the hodograph transformation of the equations of inviscid,. 

transonic fluid flow is too well known to need description here, particularly 
in its approximate form which leads to the Tricomi equation. Whilst 
this is not the place for a rigorous criticism of the assumptions involved 
in this approximation, it will be recalled that its essential basis is that the 
fluid perturbation velocity is in general of small magnitude compared with 
the speed of sound. I t  is not unusual for this approximation to be used 
for a flow about a body with a stagnation point, though plainly the assumptions 
made break down in the immediate locality of such a point. Indeed the 
perturbation velocity becomes singular at  this point. However, by reducing 
some relative proportion representing the body geometry and governing 
the magnitude of the disturbance created-such as the (thickness/chord) 
ratio of a wing section-it is possible to arrange that the perturbation of 
velocity exceeds any prescribed limit only within a region whose dimensions 
are small compared with those of the body. 

In  the present paper we shall discuss the flow about blugbodies, for which 
there is inevitably a ‘ stagnation point ’ represented by a singularity in the 
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perturbation velocity, whose form differs according to the shape of the 
body. For instance, the rise in speed along the body surface from the nose 
will be shown to be more rapid on bluff shapes than on those with more 
nearly sharp noses. However, we are also dealing with half-bodies, whose 
scale is characterized by a single length-such as, for example, the nose 
radius of the body if it happens to be parabolic. I t  transpires that the 
approximation is inapplicable within a region about the nose whose 
dimensions are of the order of this characteristic length. Thus the solution 
is only valid as applied to the flow at such distances from the nose (large 
compared with this length) that the perturbation velocities are bounded 
within prescribed small limits. In particular, the surface conditions are 
only correctly simulated where the surface slope is small. Relative to this 
scale, the region of failure is small, and by the same token the actual shape 
of the body surface in this region is really immaterial. 

A precise distinction is drawn if it is stated that, by using the Tricomi 
equation, we can strictly deal with only the asymptotic behaviour (towards 
infinity) of the sonic flow about certain half-bodies, whose asymptotic shape 
is stipulated. Asymptotic conditions are approached within any desired 
accuracy at distances which are large compared with the characteristic 
length of the body asymptote (which we shall later identify by the symbol c). 

Usually a solution is sought of this Tricomi equation by the method of 
separation of variables, these being in fact the Cartesian perturbation 
velocity components of the fluid motion. We seek here a solution of the 
equation by the same method, using, however, two different independent 
variables which are functions of both these velocity components. These 
particular functions have appeared before in various essays on the subject 
of transonic flow, though it does not appear that they have been used in 
the way employed here. 

It may be that, by superposition of such solutions as those obtained 
below, it is possible to  determine the flow about certain closed bodies; 
it is certain that various asymmetric flow fields about lifting surfaces may 
be derived in this way. These could be of practical interest, though the 
appearance of supersonic regions of flow and limit lines greatly complicates 
such analysis. However, we shall content ourselves here with the simple 
basic solutions which yield the flow about semi-infinite and symmetric 
bodies whose ordinates vary as x", where x is the distance downstream of 
the nose in the free-stream direction. Provided the power index n is between 
0-4 and 1, the flow velocity is nowhere supersonic. The half-body whose 
ordinates vary as x2/5 is of particular interest since, within the accuracy of 
the approximation, the surface speed is constant and sonic; because of 
this the flow may also be envisaged as that about a finite aerofoil of this nose 
shape having a flat base, with free-streamlines extending from the corners 
of its base to enclose the wake. It might be concluded that such an aerofoil 
has zero pressure drag, but this is not so because of the existence of an edge 
force at the nose ; however, its drag is much less than that of a wedge on 
the same base and of the same chord. The parabola is another member of 
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the family of half-bodies which is also of interest, since it coincides with the 
displacement surface of a laminar boundary layer on a flat plate. T h e  
semi-infinite wedge does not yield a bounded field of velocity and is not 
amenable to treatment. 

In general, we treat only the surface conditions and not the complete 
streamline pattern, though computation of this would be possible. The 
hodograph solution is first obtained and then its interpretation in the 
physical plane is discussed. Finally, the particular applications already 
mentioned are amplified. 

If a liberal view is taken, it can be suggested that the results lend support 
to the general belief that a bluff-nose can provide less drag than a sharp 
one at the speed of sound. The results may prove of use in design problems 
of both internal and external aerodynamics; and they enable the extent 
of the inviscid wake to be calculated in conditions of shock-free flow 
separation at sonic speeds. 

THE HODOGRAPH SOLUTION 

Suppose that the velocity of flow of a gas is everywhere nearly sonic ;. 
then the Cartesian components U and V (with the direction of the free- 
stream in the direction of the positive x-axis) can be written as 

where u and v are small compared with unity, and a* is the critical speed 
of sound. Using u and 71 as independent variables, it can then be shown 
that the stream function Y and velocity potential @ of the flow obey the 
equations 

The second of these relations is satisfied by defining a function Q(u, 7 1 )  such 
that 

and the first then yields the well-known Tricomi equation 

= 21Yw, Q U  = -Yu. 

@ =  -i2 u, = Qtl, (2) 

i22uu+uQt,1. = 0. (3 1 
Solutions of this equation by means of separation of the variables u 

and v have frequently been found of interest. We here employ the same 
means, but we separate instead newly introduced independent variables, 

We shall concern ourselves only with flows without supersonic regions so 
that u 2 0;  hence w 2 0, and 0 < t < 1. If supersonic regions were 
present the value of .$ would not lie in this range. Positive and negative 
values of v are distinguished by the sign of f 1 / 2 .  Using these new variables, 
equation (3) becomes 

If we seek a solution of the form 

w = 3l3+v2, t = v2/w = 1 -$(u3/w). (4) 

w2Q,,+ gwQ-2,,+(*-g)i225+t(1 - E ) i 2 , ,  = 0. (5 z 

Q = f ( w l g ( t ) ,  (6) 
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then the functions f and g satisfy the equations 

( 7 )  I w"f" + gwf' + (k4 - p2)f = 0, 

f (1  - fig" + (3 - gfk' - (A - p2)g = 0, 
where, for convenience, (&-p2) has been chosen as the constant of 
separation. 

The first of these equations may be solved to give 
f ( w )  = (C, wp + c, w-p)w-1'12, (8) 

where C, and C, are disposable constants. The second may be reduced 
to Legendre's equation, although its solution in the range f < 1 may be 
more conveniently expressed formally in terms of hypergeometric functions, 

where again B,, B, are adjustable constants. 
Since the hypergeometric functions are not affected by the sign of p, 

it is no loss of generality to put, say, C, = 0 in (S), and take the value of C, 
as unity. Further, we shall restrict the analysis to flows symmetric about 
the free-stream direction so that YP is an odd function, and @ and !2 are even 
functions, of z1 (i.e. of fl',). Thus we take B, = 0 and it follows on 
substituting from (8) and (9) in (6) that a typical solution of the form 
required is 

Using (2) and (4), together with (lo), we obtain after some rearrangement 

g ( ( ) = B , F ( & + p , & - p ;  3; f ) + B 2 E 1 / ' F ( Z + p  12 7 12 z - p *  > - ;; S), (9) 

!2 = B,~p- ' / ' 'F (&+p,h -p ;  4 ;  E ) .  (10) 

= Z(m-~)W-m+112f112F(m,a-m. , 3 .  2 '  f ) ,  J 
where, for convenience, we have put m = 2 - p ,  and replaced 2(p-&)B1 
by a*I > 0, say. 

THE INTERPRETATION OF THE FLOW IN THE PHYSICAL PLANE 

To interpret the flow pattern in the physical plane determined by the 
solution (ll), we need to invoke the following known property of the 
hypergeometric functions, which are of course equal to unity at = 0 
and are bounded and continuous in the range 0 < 4 < 1, except possibly 
at f = 1. Provided that m 2 4, there exist numbers f,, f 2  where 
0 < f1 < f 2  < 1, such that F(m,:-m; +; f )  > 0 for 0 < 5 < l,, and 
vanishes at f = 8,; and such that F(m, i- m ;  3; f )  changes sign just 
once in 0 6 f < 5, at f = 5,. If m < + it may be remarked, in passing, 
that supersonic regions of the flow and limit lines make their appearance. 

Interpreting the powers of w by their positive real values (and supposing 
m 2 3) we see that at infinity (where @ and YP are infinite) we have w = 0* 
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(and f arbitrary), so that from (1) and (4) the velocity has there decayed 
to that of the free stream. Further, the point @ = Y = 0 corresponds to 
a singularity in velocity (w = co with f arbitrary). We see that Y, but 
not @, changes sign with v (and f 1 i 2 )  as required earlier to meet the 
provisions of flow symmetry, so that we may restrict ourselves to consider 
the upper half-plane where Y > 0. For all negative @, this region is bounded 
by the line Y = 0 on which f = 0 but w takes all (non-negative) values, 
that is, on which u is positive but v = 0. Evidently this is a ' stagnation ' 
streamline, the 'stagnation' point at Q, = Y = 0 being a singular point 
of the velocity distribution, as is the usual consequence of the approximations 
involved. The line f = f1 then maps point by point on to the equipotential 
line @ = 0 extending from the singularity, the region 0 < ( < f 1  for all 
non-negative w transforming in a one-to-one relationship to all points 
within the region upstream of this line. Finally, we note that the line 
f = f ,  defines the continuation of the stagnation streamline Y = 0 with @ 
taking all positive values, the region f1 < E < f 2  mapping on to that down- 
stream of @ = 0. Since (, and so also v, # 0 on Y = 0 downstream of the 
stagnation point, the stagnation streamline divides at @ = 0 into two 
branches (symmetric about the upstream stagnation streamline), the value 
of v being equal and opposite on each side. We see that the flow is a 
symmetric one about a half-body extending downstream of Y = @ = 0 
with no singularities in the flow external to it. 

The shape of the half-body in the physical plane will now be determined. 
In so doing, we will suppose that the value of f 2  = ( , (m)  has been found 
(as already defined) to be the least positive real root of 

F(m,g-m; +; f 2 )  = 0, for m > 2; (12) 

(13) 

for brevity it is convenient to put 

(+)l'3( 1 - f 2 ) 2 / 3  F(m, f - m ; 4 ; f 2 )  = - 6/1, say, 
where 6 replaces I as an arbitrary positive length, (6/1) > 0, and is bounded 
for any m 2 Q. We see then from (4) and (11) that on the upper surface 
of the half-body (Up = 0, @ 2 0, z, 2 0 )  

u = [i(l - f2)w]1/3, 

v = (f2 w)1/2, 

w = {@/(a"6))-31'3"--2), 

1 

(14) 
I 

i 
all powers having the positive real interpretation. T o  identify the velocity 
field with the Cartesian coordinates ( x , y )  of the physical plane, we note 
that on a streamline changes of position coordinate are related to changes 
in @, within the accuracy of the approximation used in deriving the basic 
equations (2) and (3), by the expressions 

dx = d(@/a*), dy = - d(@/a+). 
Y + l  

If the stagnation point @ = Y = 0 is the origin of the Cartesian axes, it 
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follows on substituting from (14) in ( 1 5 )  that on the upper body surface 
(Y = 0) 

whence on integration, its shape is given by 

( Y k )  = ( X i € ) " ,  

Since m 2 8 it follows that the index n can take any value between 0.4 
and unity. 

The pressure coefficient C, is related to the velocity changes with 
sufficient accuracy by the equation 

L. c, = - 
l '+lU' 

whence from (14), ( 1 5 )  and (16) it follows that on the body surface 

C, = a(n)(dy/dx)2'3 = n213a(n)(€/x)2(l-n)'3, 1 

The function cc(n) may be determined by solving (12 ) ;  this demands 
a knowledge of the behaviour of the quoted hypergeometric function, which 
may, however, be related to evaluated transcendental functions if the value 
of m is an integral multiple of 3. In particular, we note that for m+ # + 0 

where B(a, b )  is the beta function. 
Its variation is 

sketched in figure 1,  composed from a discrete number of solutions of (12). 
The expressions for the hypergeometric function appearing in (12) with 
values of 6m between 4 and 9 are summarized for convenience in table 1. 
The expressions with larger integral values of 6m both for this and also 
for the other hypergeometric function of the fundamental solution ( l l ) ,  
may be determined from the tabulated functions by elementary operations. 
The manner of these operations is indicated in table 1. 

The point made in the Introduction about the breakdown of the theory 
close of the stagnation point is best appreciated by referring to equation (1  S ) ,  
from which it will be seen that C, and dyldx are in general finite on the surface 
for finite (x i€) ,  where (from equation (16)) it will be observed that ( y / ~ )  
is also finite. In  general the velocity perturbations will only be small, as 
required by the Tricomi approximation, at distances from the origin which 
are large compared with E. Thus if it is required that C, (or u )  has an 

Thus cc varies from 0 to co as n varies from 0.4 to 1. 

F.M. K 
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n 
0.a 0.9 

I 0 
0.4 0.5 0.6 0 . 7  

Figure 1. Variation of the function a(n) introduced in equation 

(2a-1)(6[+6a-l) 
4a(3a+1) F(a,3-a;  8; f)+ F(uS-1, f-a-1; 8; f) = 

I (12a-1) 
i ___ F(a, ;-a; 3; f), 4a(3a+l) 

d 
where F(a, $ -a;  3; 5) = 2t1l2 - [?/2F(a, $-a; 8; 5)] 

d5 
~~ 

Table 1. Closed expressions for the hypergeometric functions F(m, 3-m; Q; 6). The 

expression Bg(a, b) = ta-1(1 -t)b--l dt is the incomplete beta-function. s,' 
order of magnitude (l/N), then zi has a smaller order of magnitude (l/N3'2), 
and it may be shown that this applies in general where 

The singularity representing the stagnation point becomes more intense 
as the degree of bluffness, represented by the exponent (1 - a ) ,  increases. 
Thus equation (18) shows that as n is reduced towards 0.4 the surface 
speed recovers more rapidly from the ' stagnation point ', until in the limit, 
on the body shape given by n = 0.4 it jumps discontinuously from infinity 
to the sonic speed. Some typical examples are illustrated by figure 2. 
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Figure 2. Comparison of nose-shapes on some of the half-bodies, together with the 
corresponding pressure distributions and drag coefficients on the frontal area 
(over portions shown). Scaling the ordinates by a factor (1/N) reduces the 
pressure and drag coefficients in the ratio (1/N)2/3. 

SOME PARTICULAR SOLUTIONS OF INTEREST 

The simplest case n = 0.4 (or m = #) is of particular interest, since it 
will be seen from (16) and (18) that it yields the flow past a half-body 
(whose ordinates vary as x2I5) over the whole of whose surface the velocity 
is sonic and the pressure equal to that of the free-stream. It might therefore 
be thought that the drag on the body is zero, but an ‘ edge force ’ exists at 
the stagnation point, as may in fact be demonstrated by considering the 
drag derived from the pressure distribution along any complete streamline 
other than ‘J? = 0. It is more simple to show this, however, by noting that 
the drag on that part of any of the bodies defined by (16) ahead of the plane 
x = const., where the pressure coefficient is C,, can be expressed by means 
of a coefficient C, based on the local frontal area and given by 

Thus in particular, allowing n-+ 0.4 from above, we find from (20) with the 
help of (16) and (19), that the drag of the half-body y = ~ ~ ’ ~ x ~ 1 ~  ahead of 
the plane x = const. > 0 is 

This is independent of x and so the drag originates from the nose. The 
type of singularity in the hodograph which yields such an edge force is 
found by placing m = # in (11). 

$ ( ! ) 1 / 3 ~ ( + ,  + ) ~ p * a * 2 E ( r  + 1 ) 4 3 .  (21 1 

K 2  
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This appearance of an edge force is interesting, and it seems to be the 
first occasion that it has been noticed in the study of transonic flow. A finite 
force associated with a singularity is known to appear at a radiused leading 
edge in the treatment of the flow about it by linearized theory, provided 
only that the free-stream velocity component normal to the edge is subsonic. 
Although rounded leading edges are strictly outside the scope of linearized 
theory, it is further known that nevertheless the forces are correctly given. 
It is not possible to draw the same conclusion in the present instance, 
because there is no more exact treatment available of particular cases by which 
the issue may be judged. The most that can be said with assurance is that a 
body whose shape is asymptotic to a curvey = ~ ~ / ~ x ~ / ~  has a drag only by virtue 
ofthe pressuredistribution overthesurfaceat distances oforder 6 fromthenose. 

If the hypothesis is adopted that a free-streamline extends from the 
shoulder of a flat-based aerofoil, enclosing fluid at the free-stream pressure 
(so that there is no base-drag), we see further that this same solution (with 
n = 0-4) then yields the sonic flow about a finite aerofoil (whosc ordinates 
y cc ~ 2 ’ 5 )  with the free-streamline forming a continuation of the surface 
downstream of its flat base. The ultimate width of the ‘ wake ’ contained 
within the free-streamlines would be infinite (at infinity downstream), 
which is the same conclusion that is reached in examining the flow about 
a flat-based wedge. The drag coefficient (on frontal area) of the curved 
aerofoil thus deduced is, from (16) and (21), 

where c is the chord and ymax the semi-ordinate at the base. For a wedge, 
the numerical factor is 1.89, instead of 1.20 (Helliweli 82; Mackie 1957). 

If this same hypothesis about the wake is made in dealing with flow 
about an arbitrary aerofoil, with separation at the point of maximum 
thickness, we see that the shape of the free-streamline representing the 
wake boundary will have ordinates asymptotic to y = e3/5x215. Further, 
from a consideration of the flux of momentum at infinity, it will be evident 
that the characteristic length E of this asymptote is determined by the drag 
of the aerofoil in accordance with the expression (21). These deductions 
are in fact confirmed by the work on the wedge previously mentioned. 

The half-body given by y cc x1I2 is also of some interest as, on account 
of its parabolic shape, it evidently shows the displacement effect at sonic 
speed of a laminar boundary layer on a semi-infinite flat plate aligned with 
the stream direction. The self-induced pressure field of the boundary 
layer is then seen from (18) to vary as l/x1l3. The theory breaks down 
when applied to the semi-infinite wedge (n  = 1) since it predicts an 
unbounded surface velocity. This is perfectly compatible with results 
for the finite wedge, because these show that the surface velocity becomes 
infinite at the nose; the semi-infinite wedge, on the other hand, has no 
characteristic length, and so the surface speed must be constant, with a 
value corresponding to that at the nose of the finite wedge. 

c, = 1.20(Ymax/C)2/3(Y + 1 ) 4 3  
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